Preliminary Exam in Analysis Fall 2016

INSTRUCTIONS:

(1) There are three parts to this exam: I (measure theory), II (functional analysis), and III (complex analysis). Do three problems from each part.
(2) In each problem, full credit requires proving that your answer is correct. You may quote and use theorems and formulas. But if a problem asks you to state or prove a theorem or a formula, you need to provide the full details.

Part I. Measure Theory

Do three of the following five problems.
(1) (a) State the three convergence theorems of Lebesgue integration theory: (1) the monotone convergence theorem; (2) Fatou's lemma; (3) the dominated convergence theorem.
(b) Use Fatou's lemma to prove the dominated convergence theorem.
(2) Let f be a measurable function on a measure space (X, \mathscr{F}, μ). Let $0 \leq p<q<\infty$ and assume

$$
\int_{X}|f|^{p} d \mu<\infty \quad \text { and } \quad \int_{X}|f|^{q} d \mu<\infty .
$$

Show that

$$
\int_{X}|f|^{r} d \mu<\infty
$$

for all $r \in[p, q]$.
(3) Let (X, \mathscr{F}, μ) be a measure space with $\mu(X)<\infty$. Let $\left\{f_{n}\right\}$ be a sequence of measurable functions such that $f_{n} \rightarrow f$ almost everywhere. Suppose that there are constants $p>1$ and C such that $\left\|f_{n}\right\|_{p} \leq C$ for all n. Show that $\lim _{n \rightarrow \infty} \| f_{n}-$ $f \|_{1}=0$.
(Hint: Truncate at a large number K and let $K \rightarrow \infty$.)
(4) Let $\left\{f_{n}\right\}$ be a sequence of nondecreasing functions on a finite interval $[a, b]$ such that $f_{n}(a)=0$ for all n and

$$
\sum_{n=1}^{\infty} f_{n}(b)<\infty .
$$

Let $f(x)=\sum_{n=1}^{\infty} f_{n}(x)$. Show that

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} f_{n}^{\prime}(x)
$$

for almost every $x \in[a, b]$. You may use without proof the fact that every monotone function on the real line \mathbb{R} is almost everywhere differentiable.
(5) Let f and g be two integrable functions on $I=[0,1]$ such that

$$
\int_{I} g(y) d y=0
$$

Show that for all $p \geq 1$,

$$
\int_{I}|f(x)|^{p} d x \leq \int_{I \times I}|f(x)+g(y)|^{p} d x d y .
$$

Note: $d x$ and $d x d y$ denote the Lebesgue measures on I and $I \times I$, respectively.

Part II. Functional Analysis

Do three of the following five problems.
(1) (a) Define the convolution $f * g$ of two functions $f, g \in L^{1}(\mathbb{R})$. Show that $f *$ $g \in L^{1}(\mathbb{R})$.
(b) For $f, g \in L^{1}(\mathbb{R})$, calculate the Fourier transform $\widehat{f * g}$. Justify your answer.
(c) Define the convolution $f * g$ of two functions $f, g \in L^{2}(\mathbb{R})$. Show that

$$
|f * g(x)| \leq\|f\|_{2}\|g\|_{2}
$$

and that $f * g \in C_{b}(\mathbb{R})$ (bounded continuous functions).
(2) Suppose $f \in L^{1}(\mathbb{R}), f \geq 0, f \neq 0$. Show that the Fourier transform \hat{f} is in $C_{b}(\mathbb{R})$ (the bounded continuous functions) and that $\sup |\hat{f}(\xi)|$ is obtained at $\xi=0$ and only at $\xi=0$.
(3) Does the Fourier series of every $f \in C\left(S^{1}\right)$ converge pointwise? Here $S^{1}=$ $\mathbb{R} / 2 \pi \mathbb{Z}$ is the unit circle. Prove that your answer is correct.
(Hint: Recall that the partial sums $S_{N}(f)=D_{N} * f$ where D_{N} is the Dirichlet kernel, $D_{N}(t)=\frac{\sin \left(N+\frac{1}{2}\right) t}{\sin \frac{1}{2} t}$. You may use without proof that $\left\|D_{N}\right\|_{L^{1}\left(S^{1}\right)} \geq C \log N$.)
(4) Let H be a Hilbert space and $A: H \rightarrow H$ a bounded linear operator. Show that if $\langle A u, u\rangle=0$ for all u, then $A=0$.
(5) Let $f \in L^{2}[0,1]$ and define

$$
T f(x)=\int_{0}^{x} f(y) d y
$$

(a) Show that T is a compact operator from $L^{2}[0,1]$ to itself.
(b) Compute the adjoint of T. Is T self-adjoint on $L^{2}[0,1]$?
(c) Find all eigenvalues of T. Show that for $z \neq 0$ the operator $(T-z I)$ is 1-1 and onto, where I is the identity operator.

Part III. Complex Analysis

Do three of the following five problems.
(1) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an analytic function.
(a) Show that if $\operatorname{Re} f$ is bounded from above then f is constant.
(b) Show that if $f(z)$ is real when $|z|=1$ then f is constant.
(2) In each of the following cases, find a conformal mapping from the domain Ω onto the upper half plane $\mathbb{H}=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$.
(a) $\Omega=\{z \in \mathbb{C} \mid 0<\operatorname{Re} z<\pi\}$.
(b) $\Omega=\{z \in \mathbb{C}|\operatorname{Re} z<0,|z|<1\}$.
(3) Suppose that f is analytic in a neighborhood of the unit disc $\mathbb{D}=\{z \in \mathbb{C}| | z \mid<$ $1\}$ and has power series expansion $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. Show that if f has exactly m zeros (counted with multiplicity) inside \mathbb{D} then

$$
\inf _{|z|=1}|f(z)| \leq\left|a_{0}\right|+\left|a_{1}\right|+\cdots+\left|a_{m}\right|
$$

(4) (a) For $p, q>0$ with $p \neq q$, show using Residue Theory that

$$
\int_{0}^{\infty} \frac{d x}{\left(x^{2}+p^{2}\right)\left(x^{2}+q^{2}\right)}=\frac{\pi}{2 p q(p+q)}
$$

(b) What is the integral if $p=q$?
(5) Let $f: \mathbb{D} \rightarrow \mathbb{D}$ be an analytic function, where $\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\}$ is the unit disc. Suppose that $f(0)=f^{\prime}(0)=0$. Show that $\left|f^{\prime \prime}(0)\right| \leq 2$ with $\left|f^{\prime \prime}(0)\right|=2$ if and only if $f(z)=\alpha z^{2}$ for some $\alpha \in \mathbb{C}$ with $|\alpha|=1$.
(Hint: first show that $f(z)=z g(z)$ for $g: \mathbb{D} \rightarrow \mathbb{D}$ analytic with $g(0)=0$.)

