PRELIMINARY EXAM IN ANALYSIS FALL 2016

INSTRUCTIONS:

(1) There are **three** parts to this exam: I (measure theory), II (functional analysis), and III (complex analysis). Do **three** problems from each part.

(2) In each problem, full credit requires proving that your answer is correct. You may quote and use theorems and formulas. But if a problem asks you to state or prove a theorem or a formula, you need to provide the full details.

Part I. Measure Theory

Do **three** of the following five problems.

- (1) (a) State the three convergence theorems of Lebesgue integration theory: (1) the monotone convergence theorem; (2) Fatou's lemma; (3) the dominated convergence theorem.
 - (b) Use Fatou's lemma to prove the dominated convergence theorem.
- (2) Let *f* be a measurable function on a measure space (X, \mathscr{F}, μ) . Let $0 \le p < q < \infty$ and assume

$$\int_X |f|^p \, d\mu < \infty$$
 and $\int_X |f|^q \, d\mu < \infty$

Show that

$$\int_X |f|^r \, d\mu < \infty$$

for all $r \in [p,q]$.

(3) Let (X, ℱ, µ) be a measure space with µ(X) < ∞. Let {f_n} be a sequence of measurable functions such that f_n → f almost everywhere. Suppose that there are constants p > 1 and C such that ||f_n||_p ≤ C for all n. Show that lim_{n→∞} ||f_n - f||₁ = 0.

(Hint: Truncate at a large number *K* and let $K \rightarrow \infty$.)

(4) Let $\{f_n\}$ be a sequence of nondecreasing functions on a finite interval [a, b] such that $f_n(a) = 0$ for all n and

$$\sum_{n=1}^{\infty} f_n(b) < \infty.$$

Let $f(x) = \sum_{n=1}^{\infty} f_n(x)$. Show that

$$f'(x) = \sum_{n=1}^{\infty} f'_n(x)$$

for almost every $x \in [a, b]$. You may use without proof the fact that every monotone function on the real line \mathbb{R} is almost everywhere differentiable.

(5) Let *f* and *g* be two integrable functions on I = [0, 1] such that

$$\int_I g(y)\,dy=0.$$

Show that for all $p \ge 1$,

$$\int_{I} |f(x)|^{p} dx \leq \int_{I \times I} |f(x) + g(y)|^{p} dx dy.$$

Note: dx and dxdy denote the Lebesgue measures on I and $I \times I$, respectively.

Part II. Functional Analysis

Do three of the following five problems.

- (1) (a) Define the convolution f * g of two functions $f, g \in L^1(\mathbb{R})$. Show that $f * g \in L^1(\mathbb{R})$.
 - (b) For $f, g \in L^1(\mathbb{R})$, calculate the Fourier transform $\widehat{f * g}$. Justify your answer.
 - (c) Define the convolution f * g of two functions $f, g \in L^2(\mathbb{R})$. Show that

$$|f * g(x)| \le ||f||_2 ||g||_2$$

and that $f * g \in C_b(\mathbb{R})$ (bounded continuous functions).

- (2) Suppose $f \in L^1(\mathbb{R}), f \ge 0, f \ne 0$. Show that the Fourier transform \hat{f} is in $C_b(\mathbb{R})$ (the bounded continuous functions) and that $\sup |\hat{f}(\xi)|$ is obtained at $\xi = 0$ and only at $\xi = 0$.
- (3) Does the Fourier series of every $f \in C(S^1)$ converge pointwise? Here $S^1 = \mathbb{R}/2\pi\mathbb{Z}$ is the unit circle. Prove that your answer is correct.

(Hint: Recall that the partial sums $S_N(f) = D_N * f$ where D_N is the Dirichlet kernel, $D_N(t) = \frac{\sin(N+\frac{1}{2})t}{\sin\frac{1}{2}t}$. You may use without proof that $||D_N||_{L^1(S^1)} \ge C \log N$.)

- (4) Let *H* be a Hilbert space and $A : H \to H$ a bounded linear operator. Show that if $\langle Au, u \rangle = 0$ for all *u*, then A = 0.
- (5) Let $f \in L^2[0,1]$ and define

$$Tf(x) = \int_0^x f(y) dy.$$

- (a) Show that *T* is a compact operator from $L^2[0, 1]$ to itself.
- (b) Compute the adjoint of *T*. Is *T* self-adjoint on $L^2[0, 1]$?
- (c) Find all eigenvalues of *T*. Show that for $z \neq 0$ the operator (T zI) is 1-1 and onto, where *I* is the identity operator.

Part III. Complex Analysis

Do three of the following five problems.

- (1) Let $f : \mathbb{C} \to \mathbb{C}$ be an analytic function.
 - (a) Show that if Re *f* is bounded from above then *f* is constant.
 - (b) Show that if f(z) is real when |z| = 1 then f is constant.
- (2) In each of the following cases, find a conformal mapping from the domain Ω onto the upper half plane $\mathbb{H} = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}.$
 - (a) $\Omega = \{ z \in \mathbb{C} \mid 0 < \operatorname{Re} z < \pi \}.$
 - (b) $\Omega = \{z \in \mathbb{C} \mid \operatorname{Re} z < 0, |z| < 1\}.$
- (3) Suppose that *f* is analytic in a neighborhood of the unit disc $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}$ and has power series expansion $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Show that if *f* has exactly *m* zeros (counted with multiplicity) inside \mathbb{D} then

$$\inf_{|z|=1} |f(z)| \le |a_0| + |a_1| + \dots + |a_m|.$$

(4) (a) For p, q > 0 with $p \neq q$, show using Residue Theory that

$$\int_0^\infty \frac{dx}{(x^2 + p^2)(x^2 + q^2)} = \frac{\pi}{2pq(p+q)}$$

- (b) What is the integral if p = q?
- (5) Let $f : \mathbb{D} \to \mathbb{D}$ be an analytic function, where $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}$ is the unit disc. Suppose that f(0) = f'(0) = 0. Show that $|f''(0)| \le 2$ with |f''(0)| = 2 if and only if $f(z) = \alpha z^2$ for some $\alpha \in \mathbb{C}$ with $|\alpha| = 1$.

(Hint: first show that f(z) = zg(z) for $g : \mathbb{D} \to \mathbb{D}$ analytic with g(0) = 0.)